This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Preparation, Characterisation and Use of $[(^{<i>N</i>}-Bu_2Sn)S_2N_2]_2$ as a Metathetical Reagent

Stephen Mark Aucott; Alexandra M. Z. Slawin; J. Derek Woollins

To cite this Article Aucott, Stephen Mark , Slawin, Alexandra M. Z. and Woollins, J. Derek(2001) 'Preparation, Characterisation and Use of $\left[^{\text{(-i>Nc/i)}}\text{-Bu}_2\text{Sn} \right]_2$ as a Metathetical Reagent', Phosphorus, Sulfur, and Silicon and the Related Elements, 169: 1, 235 - 238

To link to this Article: DOI: 10.1080/10426500108546632 URL: http://dx.doi.org/10.1080/10426500108546632

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Preparation, Characterisation and Use of [(N-Bu₂Sn)S₂N₂]₂ as a Metathetical Reagent

STEPHEN MARK AUCOTT, ALEXANDRA M. Z. SLAWIN and J. DEREK WOOLLINS

Department of Chemistry, University of St Andrews, Fife, Scotland, KY16 9ST

The dimeric compound $[(^n\cdot Bu_2Sn)S_2N_2]_2$ is readily prepared by addition of $^n\cdot Bu_2SnCl_2$ to a liquid ammonia/ $[S_4N_3][Cl]$ reaction mixture. Reaction of $[^n\cdot Bu_2SnS_2N_2]_2$ with mono and dimeric organometallic M(III) (M = Rh, Ir) complexes bearing Cp^* ligands ($Cp^* = 1,2,3,4,5$ -pentamethylcyclopentadienyl) and M(II) (M = Ru, Os) phosphine complexes containing a cis arrangement of chlorides gives compounds with MS_2N_2 metallacycles.

Keywords: Tin; Sulfur; Nitrogen; Metathesis; Metallacycles

Introduction

The literature contains a number of examples of molecules which contain SnS_2N_2 rings.¹⁻⁴ The reagent most employed in the preparation of these compounds is the potentially explosive tetrasulfur tetranitride (S_4N_4). We have found that large quantities (20-30 g, 70-80%) of [("Bu₂Sn)S₂N₂]₂ can be routinely prepared from simple, non-explosive starting materials ie. "Bu₂SnCl₂ and [S_4N_3][CI] according to equation 1.

$$S_{C_{1}}^{C_{1}} + \begin{bmatrix} N & S & S \\ S & N & S \end{bmatrix}^{C_{1}} \xrightarrow{NH_{1}(I)} \frac{S}{NH_{2}(I)}$$

Equation 1

Results and Discussion

X-ray crystallographic analysis of [("Bu2Sn)S2N2]2 reveals that the

molecule consists of two identical five-membered ring systems, which are associated via N···Sn interactions to give a four-membered tin-nitrogen ring (Fig 1), both features it shares with [(Me₂Sn)S₂N₂]₂¹ and [('Bu₂Sn)S₂N₂]₂⁴.

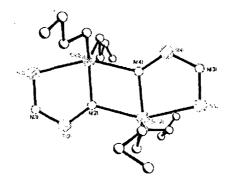


Figure 1 X-ray crystal structure of [("Bu₂Sn)S₂N₂]₂

Reaction of $[(^nBu_2Sn)S_2N_2]_2$ with cis- $[RuCl_2(dppm)_2]$, cis- $[RuCl_2(dppe)_2]$ and $[MCl_2(PP_3)]$ (M=Ru or Os and $(PP_3)=tris[2-(diphenylphosphino)ethyl]phosphine) results in ligand exchange giving <math>^nBu_2SnCl_2$ and the coressponding Ru or Os MS_2N_2 metallacyclic compound (Equ 2).

Equation 2

The ${}^{31}P\{{}^{1}H\}$ NMR spectra of cis- $[Ru(S_2N_2)(dppm)_2]$ and cis- $[Ru(S_2N_2)(dppe)_2]$ show three well-separated resonances (Fig 2) of relative intensities 1:1:2 (AMXX' splitting pattern).

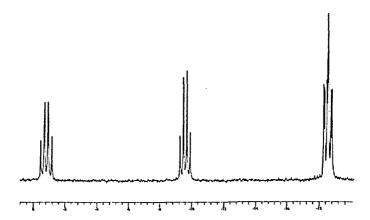


Figure 2 $^{31}P\{^{1}H\}$ NMR (CD₂Cl₂) of cis-[Ru(S₂N₂)(dppm)₂]

Preliminary ³¹P{¹H} NMR studies of the reaction between [MCl₂(PP₃)] (M = Ru or Os and (PP₃) = tris[2-(diphenylphosphino)ethyl]phosphine) and [(ⁿBu₂Sn)S₂N₂]₂ suggest that in benzene predominantly one isomer is formed, while reaction in either CH₃Cl or CH₂Cl₂ gives equal amounts of both isomers (Fig 3).

Figure 3 Two isomeric forms of $[M(S_2N_2)(PP_3)]$ (M = Ru, Os)

Reaction of [("Bu₂Sn)S₂N₂]₂ with [Cp*MCl₂(PPh₃)] (M = Rh, Ir) in the presence of NH₄[PF₆] gives highly unusual bimetallic products containing both three and four-coordinate metal centres. The iridium analogue has been crystallographically characterised (Fig 4) and shows that the tri-coordinate Cp*IrS₂N₂ portion of the molecule acts as a neutral ligand and is bound to the tetra-coordinate iridium centre via what is considered the non-basic

nitrogen atom in the IrS_2N_2 ring. This is the first reported example of coordination of the S-N=S nitrogen of the $[S_2N_2]^{2^*}$ dianion.

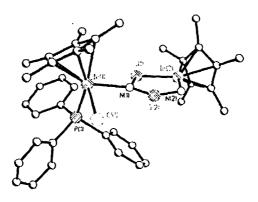


Figure 4 X-ray crystal structure of [Cp*IrCl(PPh₃){(N₂S₂)IrCp*)}] [PF₆] the PF₆ counterion has been ommitted for clarity.

Conclusions

 $[(^nBu_2Sn)S_2N_2]_2$ is accessable via a straightforword (one-pot) synthetic route and has shown its effectiveness as a synthetic $[S_2N_2]^2$ metathesis reagent.

Acknowledgements

We are grateful to the EPSRC (S.M.A.) for funding and to the JREI for an equipment grant.

References

- [1] H.W. Roesky, Z. Naturforsch., 1976, 31B, 680.
- [2] M. K. Das, J. W. Bibber, J. J. Zuckerman, Inorg. Chem., 1982, 21, 2864.
- [3] T. Chivers, J. Fait, K. J. Schmidt, Inorg. Chem. 1989, 28, 3018.
- [4] D. Hänssgen, M. Jansen, W. Assenmacher, H. Salz, J. Organomet. Chem., 1993, 445, 61.